【欢迎您关注--农业环境科学】

图片

图片


文章信息

第一作者:张颖

通讯作者:蒲生彦 教授

通讯单位:成都理工大学

https://doi.org/10.1016/j.jhazmat.2023.132302


亮点

  • 粒径为10 μm的PE MPs可进入玉米根部;

  • PE MPs在玉米各组织中的积累规律为:根>叶>茎;

  • PE MPs处理下导致玉米根系活性氧水平升高;

  • 1%老化PE MPs显著抑制了玉米的生长和酶活性;

  • 影响土壤性质、微生物群落和代谢功能变化的主导因素是PE MPs的老化效应。



研究进展

图片
本研究采用自主开发的Eu-MPs定量表征方法和原位酶谱法,研究了初级/老化PE MPs与土壤-微生物组-作物复合系统的相互作用以及PE MPs在作物中的富集行为。研究结果首次证明了微米级PE (> 10 μm)存在于玉米作物中,其积累量表现为根>叶>茎。初级PE MPs显著提高了土壤TN、TC、SOM和β-glu活性,抑制了Phos活性。老化PE MPs显著降低了土壤TN、TP、β-glu和Phos活性,对玉米株高、茎粗和叶干重也有显著抑制作用。老化PE MPs显著影响了土壤微生物多样性,主要由UTCFX1SphingomonasSubgroup-6Gemmatimonas等细菌属引起。老化PE MPs还影响了与微生物群落组成和玉米生长有关的代谢,包括Glycerolipid、Citrate cycle (TCA cycle)、C5-Branched dibasic acid、Arginine and proline、Tyrosine metabolism、pentose phosphate pathway、Valine, leucine and isoleucine biosynthesis。这些研究结果表明,广泛存在于农田土壤中的老化PE MPs会影响作物生长、土壤微生物群落和代谢功能,从而影响农业生态系统和陆地生物多样性。
图片
图片
Fig.1 Effects of PE MPs with different treatments on soil properties. (a) pH; (b) SOM; (c) TN, TC and TP. The errors were expressed as standard deviations. The error bars represented the standard errors of triplicate experiments. Different letters above the error bars of the same series indicated significant differences among treatments (P < 0.05). (a) and (b) Soil pH and SOM content were measured every eight days, throughout the entire experimental period. (c) Original soil represented the soil sample before the start of the experiment; the remaining treatment groups were measured after the end of the experimental period.
图1 不同PE MPs处理组对土壤性质的影响。(a) pH值;(b) SOM;(c) TN、TC和TP。

图片
Fig. 2 Effects of PE MPs with different treatments on maize development. (a) plant height; (b) lateral leaf length; (c) stem diameter; (d) dry weight; (e)H2O2 distribution in maize roots (staining with 3,3-diaminobenzidine (DAB)); (f) O2− distribution in maize roots (staining with nitroblue tetrazolium (NBT)). The errors were expressed as standard deviations. The error bars represented the standard errors of triplicate experiments. Different letters above the error bars of the same series indicated significant differences among treatments (P < 0.05).
图2 不同PE MPs处理组对玉米发育的影响。(a)株高;(b)叶侧长;(c)茎粗;(d)干质量;(e) H2O2和(f) O2−在玉米根系中的分布。

图片
Fig. 3 Effects of PE MPs with different treatments on the accumulation of micro nutrient in maize roots, stems, and leaves. (a) Mn, (b) Fe, (c) Cu, (d) Zn. The errors were expressed as standard deviations. The error bars represented the standard errors of triplicate experiments. Different letters above the error bars of the same series indicated significant differences among treatments (P < 0.05). Red arrow indicated a magnified view of the area inside the red square.
图3 不同PE MPs处理组对玉米根、茎、叶组织中微量营养元素积累的影响。(a) Mn;(b) Fe;(c) Cu;(d) Zn。

图片
Fig. 4 Effects of PE MPs with different treatments on the enzyme activities. (a) soil NAG; (b) soil β-glu; (c) soil Phos; (d) rhizosphere NAG, β-glu and Phos; (e) in situ zymograms for maize rhizosphere enzyme activities. The errors were expressed as standard deviations. The error bars represented the standard errors of triplicate experiments. Different letters above the error bars of the same series indicated significant differences among treatments (P < 0.05). Red arrow indicated a magnified view of the area inside the red square.
图4 不同PE MPs处理组对酶活性的影响。(a)土壤NAG;(b)土壤β-glu;(c)土壤Phos;(d)根际NAG、β-glu和Phos;(e)玉米根际酶活性原位酶谱图。

图片
Fig. 5 SEM images (cross section) of maize tissue from non-treated (control) and PE MPs treated maize. (a1), (a2) and (a3) the control group (without adding any PE MPs); (b1), (b2), (b3), (c1), (c2), (c3), (d1), (d2) and (d3) localization in the maize roots; (e1), (e2) and (e3) localization in the maize stems; (f1), (f2) and (f3) localization in the maize leaves. The red square indicated the position of the PE MPs; the yellow circle, arrow and the number indicated the particle size of the PE. (a1), (b1), (c1), (d1), (e1) and (f1) scale bars, 200 μm; (a2), (b2), (c2), (d2), (e2) and (f2) scale bars, 50 μm; (a3), (b3), (c3), (d3), (e3) and (f3) scale bars, 20 μm.
图5 未处理(对照)和PE MPs处理下玉米组织的SEM图像(横截面)。(a1)、(a2)、(a3)对照组(未添加任何PE MPs);(b1)、(b2)、(b3)、(c1)、(c2)、(c3)、(d1)、(d2)、(d3)在玉米根部组织中的定位;(e1)、(e2)和(e3)在玉米茎部中的定位;(f1)、(f2)和(f3)在玉米叶片中的定位。红色方块表示PE MPs的位置,黄色圆圈、箭头和数字表示PE的粒径。(a1), (b1), (c1), (d1), (e1)和(f1)标尺为200 μm;(a2), (b2), (c2), (d2), (e2)和(f2)标尺为50 μm;(a3), (b3), (c3), (d3), (e3)和(f3)标尺为20 μm。

图片
Fig. 6 CLSM images (longitudinal section) of PE MPs localization in the maize root tissue with excitation wavelength of 405 nm and emission wavelength of 610 nm. (a) and (d) are bright field images; (b) and (e) are fluorescent images; (c) and (f) are the corresponding merged images of bright field images and fluorescent images. (a), (b) and (c) scale bars, 200 μm; (d), (e) and (f) scale bars, 20 μm (Red fluorescence represents the spontaneous fluorescence of lignin in maize root tissue).
图6 激发波长为405 nm、发射波长为610 nm时PE MPs在玉米根部组织定位的CLSM图像(纵剖面)。(a)和(d)为明场图像;(b)和(e)是荧光图像;(c)和(f)为混合图像。(a)、(b)、(c)标尺为200 μm;(d)、(e)、(f)标尺为20 μm(红色荧光表示玉米根组织中木质素的自发荧光)。

图片
Fig. 7 The α-diversity of microbial communities in rhizosphere and non-rhizosphere soil of different treatment groups. (Note: C: Control group, S: 0.1% PE, L: 1% PE, OS: 0.1% Age-PE, OL: 1% Age-PE, F: Eu-PE, CR: Control group rhizosphere, SR: 0.1% PE rhizosphere, LR: 1% PE rhizosphere, OSR: 0.1% Age-PE rhizosphere, OLR: 1% Age-PE rhizosphere, FR: Eu-PE rhizosphere). Boxplot showed the minimum, maximum, lower quartile, median, and upper quartile values, and the whiskers showed the range of the variation.
图7 不同处理组中根际和非根际土壤微生物群落α-多样性。

图片
Fig. 8 Relative abundance of rhizosphere and non-rhizosphere soil microbial phyla (a) and class (b) levels. (Note: C: Control group, S: 0.1% PE, L: 1% PE, OS: 0.1% Age-PE, OL: 1% Age-PE, F: Eu-PE, CR: Control group rhizosphere, SR: 0.1% PE rhizosphere, LR: 1% PE rhizosphere, OSR: 0.1% Age-PE rhizosphere, OLR: 1% Age-PE rhizosphere, FR: Eu-PE rhizosphere).
图8 不同处理组中根际和非根际土壤微生物门(a)和纲(b)水平的相对丰度。

图片
Fig. 9 Genus level species composition heat map of species clustering. Red color block represented a higher abundance of the genus, while blue color block represented a lower abundance of the genus. (Note: C: Control group, S: 0.1% PE, L: 1% PE, OS: 0.1% Age-PE, OL: 1% Age-PE, F: Eu-PE, CR: Control group rhizosphere, SR: 0.1% PE rhizosphere, LR: 1% PE rhizosphere, OSR: 0.1% Age-PE rhizosphere, OLR: 1% Age-PE rhizosphere, FR: Eu-PE rhizosphere).
图9 不同处理组中根际和非根际土壤微生物属水平物种组成热图。

图片
Fig. 10 The species load map and sample two-dimensional sorting map of PCA analysis (a) each point represented a genus, and the abscissa and ordinate of the point can be considered as the contribution of the species to the differences in these two dimensions of the sample (b) each point represented a sample, and dots of different colors indicated different processing groups. (Note: C: Control group, S: 0.1% PE, L: 1% PE, OS: 0.1% Age-PE, OL: 1% Age-PE, F: Eu-PE, CR: Control group rhizosphere, SR: 0.1% PE rhizosphere, LR: 1% PE rhizosphere, OSR: 0.1% Age-PE rhizosphere, OLR: 1% Age-PE rhizosphere, FR: Eu-PE rhizosphere).
图10 不同处理组中根际和非根际土壤微生物PCA分析的物种载荷图和样本二维排序图。

图片
Fig. 11 Heat map with the Metabolism analysis of metabolic pathways in the tertiary functional layer. Down-regulation of metabolites represented in blue and up-regulation of metabolites represented in red color. (Note: C: Control group, S: 0.1% PE, L: 1% PE, OS: 0.1% Age-PE, OL: 1% Age-PE, F: Eu-PE, CR: Control group rhizosphere, SR: 0.1% PE rhizosphere, LR: 1% PE rhizosphere, OSR: 0.1% Age-PE rhizosphere, OLR: 1% Age-PE rhizosphere, FR: Eu-PE rhizosphere).
图11 不同处理组中根际和非根际土壤微生物代谢路径热图。



作者介绍


图片


张颖,第一作者,成都理工大学环境与土木工程学院2020级博士研究生。主要研究方向:微塑料的环境归趋。


图片


蒲生彦,通讯作者,教授,博士生导师,现任成都理工大学生态环境学院副院长,地质灾害防治与地质环境保护国家重点实验室土壤地下水污染协同防治创新团队学术带头人。国家重点研发计划项目首席科学家、香江学者、四川省“千人计划”特聘专家和“蓉漂计划”特聘专家,首届中国环境科学学会“青年科学家奖”金奖获得者。先后主持国家重点研发计划项目、区域联合基金重点项目、国家水体污染控制与治理科技重大专项子课题等各级各类科研项目20余项;先后发表学术论文140余篇;申请和授权国家发明专利35件;软件著作权7件;参编国家环境标准3项;主编/参编学术专著5部;主编教材2本。


通讯邮箱:

pushengyan@gmail.com; pushengyan13@cdut.edu.cn


责任编辑:宋潇

校对丨审核:张阳 王农

图片

欢迎各位专家学者向农业环境科学投稿宣传团队科研成果!请您联系邮箱:caep_sx@163.com。投稿时请确保您拥有论文的翻译、编辑、转载等权利。


图片
农业环境科学——推荐阅读


微塑料对农田污染物迁移的促进作用农田土壤中微塑料的赋存、迁移及生态效应研究进展聚丙烯微塑料添加对大豆和花生生长及生理生态特征的影响

图片

图片

图片

欢迎关注
举报/反馈

农业环境科学

2029获赞 1.1万粉丝
农业环保路,你我同行!
农业部环境保护科研检测所
关注
0
0
收藏
分享