阿里云 EMR on ACK 为用户提供了全新的构建大数据平台的方式,用户可以将开源大数据服务部署在阿里云容器服务(ACK)上。利用 ACK 在服务部署和对高性能可伸缩的容器应用管理的能力优势,用户只需要专注在大数据作业本身。用户可以便捷地将 Spark、Presto、Flink 作业执行在 ACK 集群上,100%兼容开源,性能优于开源。

一、背景介绍

技术趋势

  • 存储与计算分离,向云原生演进
  • 在线业务、AI、大数据统一接入 ACK 集群,错峰调度,离线在线混部,提升机器利用率
  • 统一运维入口,统一运维工具链,统一监控体系
  • 以集群为中心->以作业为中心
  • 多版本支持,例如可以同时跑 Spark2.x、Spark3.x

云原生面临挑战

  • 计算与存储分离:如何构建以对象存储 OSS 为底座的 HCFS 文件系统

需要完全兼容现有的 HDFS

性能对标 HDFS,成本降低

  • 计算引擎 shuffle 数据存算分离:如何解决 ACK 混合异构机型

异构机型没有本地盘

社区[ Spark-25299]讨论,支持 Spark 动态资源,成为业界共识

  • ACK 调度能力:如何解决调度性能瓶颈

性能对标 Yarn

多级队列管理

  • 错峰调度

借助 K8s 操作系统能力,编排组织各种业务的波峰波谷

EMR on ACK 优势

  • Remote Shuffle Service 提供中间 shuffle 数据的存储计算分离方案

可以使计算节点无需本地盘和云盘

支持打开 Spark 动态资源功能,Spark-25299 终极方案

  • JindoFS 针对 OSS 存储提供湖加速解决方案

Block 模式1TB TPCDS 场景下有15%以上的性能提升

  • 调度层面支持 Scheduler Framework V2

调度性能比社区提升3x以上

提供多级队列管理

  • 引擎能力增强

10TB TPCDS Benchmark 场景下,EMR Spark 比社区有3x性能提升

Hudi、DeltaLake 比社区功能性能增强

  • 完整的错峰调度方案

二、EMR 容器化架构

EMR on ACK 架构

  • 轻量化管控,对接已有数据平台
  • 通过数据开发集群/调度平台提交到不同的执行平台
  • 错峰调度,根据业务高峰低峰策略调整
  • 云原生数据湖架构,ACK 弹性扩缩容能力强
  • ACK 管理异构机型集群,灵活性好

三、产品介绍

产品首页

参考链接https://www.aliyun.com/product/emapreduce

新建集群

  • 地域:目前开放杭州、上海、北京、深圳等地域(持续开放中)
  • 集群类型:Spark 、Shuffle Service、Presto
    • Spark — 通用的分布式大数据处理引擎

提供了 ETL、离线批处理、数据建模等能力

    • Shuffle Service — 针对 EMR 计算引擎提供优化的 Shuffle 服务

解决 Kubernetes 下对本地盘的依赖问题

解决大规模计算集群的网络和磁盘的 IO 瓶颈

支持计算与存储分离的架构,可服务多个 EMR 集群

    • Presto — 基于内存的分布式 SQL 交互式查询引擎

支持多种数据源

适合 PB 级海量数据的复杂分析,以及跨数据源的查询

  • 组件版本:Spark (3.1.1)
  • 专属节点:

现有 ACK 集群,share 部分节点给到 EMR

新建 ACK 集群,可选择整个集群为专属节点

  • OSS Bucket:用于存储作业、日志、jar 包等信息

集群管理

  • 集群 ID/名称:点击进入作业管理
  • 集群状态:检测集群是否可用
  • 所属 ACK 集群:可关联到现有 ACK 集群
  • 配置:Spark 作业配置
  • 释放:释放空间

原文链接:http://click.aliyun.com/m/1000293378/

本文为阿里云原创内容,未经允许不得转载。

举报/反馈

阿里云云栖号

2062获赞 1.2万粉丝
阿里巴巴旗下面向开发者的开放型技术平台。
阿里云计算有限公司
关注
0
0
收藏
分享