前言
这次的内容是我自己为了总结Redis知识而扩充的,上一篇其实已经总结了几点知识了,但是Redis的强大,以及适用范围之广可不是单单一篇博文就能总结清的。所以这次准备继续总结,因为第一个问题,Redis的批量操作,是我在面试过程中被真实问到的,当时没答上来,也是因为确实没了解过Redis的批量操作。
当时的问题,我还记得比较清晰:Redis执行批量操作的功能是什么?使用场景就是搞促销活动时,会做预缓存,会往缓存里放大批数据,如果直接放的话那么会很慢,怎么能提高效率呢?
Redis的批量操作-管道(pipeline)
首先Redis的管道(pipeline)并不是Redis服务端提供的功能,而是Redis客户端为了减少网络交互而提供的一种功能。
正常的一次Redis网络交互如下:
pipeline主要就是将多个请求合并,进行一次提交给Redis服务器,Redis服务器将所有请求处理完成之后,再一次性返回给客户端。
下面我们分析一下pipeline的原理
pipeline的一个交互过程是这样的:
客户端进程调用write命令将消息写入到操作系统内核为套接字分配的发送缓冲区send buffer。客户端操作系统通过网络路由,将send buffer中的数据发送给服务器操作系统为套接字分配的接收缓冲区 receive buffer。服务端进程调用read命令从receive buffer中取出数据进行处理,然后调用write命令将相应信息写入到服务端的send buffer中。服务端操作系统通过网络路由,将send buffer中的数据发送给客户端操作系统的receive buffer。客户端进程调用read命令将数据从receive buffer中取出进行业务处理。在使用pipeline时需要注意:
pipeline执行的操作,和mget,mset,hmget这样的操作不同,pipeline的操作是不具备原子性的。还有在集群模式下因为数据是被分散在不同的slot里面的,因此在进行批量操作的时候,不能保证操作的数据都在同一台服务器的slot上,所以集群模式下是禁止执行像mget、mset、pipeline等批量操作的,如果非要使用批量操作,需要自己维护key与slot的关系。pipeline也不能保证批量操作中有命令执行失败了而中断,也不能让下一个指令依赖上一个指令,如果非要这样的复杂逻辑,建议使用lua脚本来完成操作。
Redis实现消息队列和延时队列
消息队列
Redis的实现消息队列可以用list来实现,通过lpush与rpop或者rpush与lpop结合来实现消息队列。
但是若是list为空后,无论是lpop还是rpop都会持续的获取list中的数据,若list一直为空,持续的拉取数据,一是会增加客户端的cpu利用率,二是也增高了Redis的QPS,解决方案是使用blpop或brpop来代替lpop或rpop。 其实blpop和brpop的作用是bloking pop,就是阻塞拉取数据,当消息队列中为空时就会停止拉取,有数据后立即恢复拉取。
但是当没有数据的时候,阻塞拉取,就会一直阻塞在那里,时间久了就成了空闲连接,那么Redis服务器一般会将时间闲置过久的连接直接断掉,以减少连接资源。所以还要检测阻塞拉取抛出的异常然后进行重试。
另外一点,就是Redis实现的消息队列,没有ACK机制,所以想要实现消息的可靠性,还要自己实现当消息处理失败后,能继续抛回队列。
延时队列
用Redis实现延时队列,其实就是使用zset来实现,将消息序列化成一个字符串(可以是json格式),作为为value,消息的到期处理时间做为score,然后用多线程去轮询zset来获取到期消息进行处理。
多线程轮询处理,保证了可用性,但是要做幂等或锁处理,保证不要重复处理消息。
主要的实现代码如下。
/** * 放入延时队列 * @param queueMsg */private void delay(QueueMsg queueMsg){ String msg = JSON.toJSONString(queueMsg); jedis.zadd(queueKey,System.currentTimeMillis()+5000,msg);}/** * 处理队列中从消息 */private void lpop(){ while (!Thread.interrupted()){ // 从队列中取出,权重为0到当前时间的数据,并且数量只取一个 Set<String> strings = jedis.zrangeByScore(queueKey, 0, System.currentTimeMillis(), 0, 1); // 如果消息为空,就歇会儿再取。 if(strings.isEmpty()){ try { //休息一会儿 Thread.sleep(500); } catch (InterruptedException e) { e.printStackTrace(); break; } continue; } String next = strings.iterator().next(); // 如果抢到了消息 if(jedis.zrem(queueKey,next)>0){ // 反序列化后获取到消息 QueueMsg queueMsg = JSON.parseObject(next, QueueMsg.class); // 进行消息处理 handleMsg(queueMsg); } }}订阅模式
Redis的主题订阅模式,其实并不想过多总结,因为由于它本身的一些缺点,导致它的应用场景比较窄。
前面总结的用Redis的list实现的消息队列,虽然可以使用,但是并不支持消息多播的场景,即一个生产者,将消息放入到多个队列中,然后多个消费者进行消费。
这种消息多播的场景常用来做分布式系统中的解耦。用哦publish进行生产者发送消息,消费者使用subscribe进行获取消息。
例如:我向jimoerChannel发送了一条消息 b-tree
127.0.0.1:6379> publish jimoerChannel b-tree(integer) 1订阅这个渠道的消费者立马收到了一条b-tree的消息。
127.0.0.1:6379> subscribe jimoerChannelReading messages... (press Ctrl-C to quit)1) "subscribe"2) "jimoerChannel"3) (integer) 11) "message"2) "jimoerChannel"3) "b-tree"我前面也说到了,Redis的pub/sub订阅模式,其实最大的缺点就是,消息不能持久化,这样就导致,若是消费者挂了或是没有消费者,那么消息就会被直接丢弃。因为这个原因,所以导致他的使用场景比较少。
IO模型
Redis的过期策略
Redis的过期策略是适用于所有数据结构的。数据一到过期时间就自动删除,Redis会将设置了过期时间的key 放置在一个字典表里。
定期删除
Redis会定期遍历字典表里面数据来删除过期的Key。Redis默认的定期删除策略是每秒进行10次过期扫描,即每100ms扫描一次。并不是扫描全部设置了过期时间的key,而是随机扫描20个key,删除掉已经过期的key,如果过期的比率超过25%,那么就继续进行扫描。
惰性删除
因为定期删除是随机抽取一些key来进行过期删除,所以如果key并没有被定期扫描到,那么过期的key就不会被删除。所以Redis还提供了惰性删除的策略,就是当去查询某些key的时候,若是key已经过期了,那么就会删除key,然后返回null。
另外一点当在集群条件下,主从同步情况中,主节点中的key过期后,会在aof中生成一条删除指令,然后同步到从节点,这样的从节点在接收到aof的删除指令后,删除掉从节点的key,因为主从同步的时候是异步的所以,短暂的会出现主节点已经没有数据了,但是从节点还存在。
但是若是定期删除也没有扫描到key,而且好长时间也没去去使用key,那么这部分过期的key就会一直占用的内存。所以Redis又提供了内存淘汰机制。
内存淘汰机制
当Redis的内存出现不足时,就会持续的和磁盘进行交互,这样就会导致Redis卡顿,效率降低等情况。这在线上是不允许发生的,所以Redis提供了配置参数 maxmemory 来限制内存超出期望大小。
当内存使用情况超过maxmemory的值时,Redis提供了以下几种策略,来让使用者通过配置决定该如何腾出内存空间来继续提供服务。
noeviction 不会继续提供写请求(del请求可以),读请求可以,写请求会报错,这样保证的数据不会丢失,但是业务不可用,这是默认的策略。volatile-lru 会将设置了过期时间的key中,淘汰掉最近最少使用的key。没有设置过期时间的key不会被淘汰,保证了需要持久化的数据不丢。volatile-ttl 尝试将设置了过期时间的key中,剩余生命周期越短,越容易被淘汰。volatile-random 尝试将从设置了过期时间的key中,随机选择一些key进行淘汰。allkeys-lru 从所有key中,淘汰掉最近最少使用的key。allkeys-random 从所有key中,随机淘汰一部分key。那么具体设置成哪种淘汰策略呢?这就是要看在使用Redis时的具体场景了,如果只是用Redis做缓存的话,那么可以配置allkeys-lru或allkey-random,客户端在写缓存的时候并不用携带着过期时间。若是还想要用持久化的功能,那么就应该使用volatile-开头的策略,这样可以保证每月设置过期时间的key不会被淘汰。
内存淘汰策略的配置如下:
# 最大使用内存 maxmemory 5m# 内存淘汰策略 The default is:noeviction maxmemory-policy allkeys-lruLRU算法
LRU算法的实现,其实可以靠一个链表。链表按照使用情况来进行排序,当空间不足时,会剔除掉尾部的数据。当某个元素被访问时它会被移动到链表头。
在真实的面试中,若是让写出LRU算法,我认为可以使用Java中的LikedHashMap来实现,因为LikedHashMap已经实现了基本的LRU功能,我只需要封装一下就改造成了自己的了。
/** * @author Jimoer * @description */public class MyLRUCache<K,V> { // lru容量 private int lruCapacity; // 数据容器(内存) private Map<K,V> dataMap; public MyLRUCache(int capacity){ this.lruCapacity = capacity; // 设置LinkedHashMap的初始容量为LRU的最大容量, // 扩容因子为默认的0.75,第三个参数是否将数据按照访问顺序排序。 dataMap = new LinkedHashMap<K, V>(capacity, 0.75f, true){ @Override protected boolean removeEldestEntry(Map.Entry<K, V> eldest) { // 当数据量大于lruCapacity时,移除掉最老使用的数据。 return super.size()>lruCapacity; } }; } public V get(K k){ return dataMap.get(k); } public void put(K key, V value){ dataMap.put(key,value); } public int getLruCapacity() { return lruCapacity; } public Map<K, V> getDataMap() { return dataMap; }}测试代码:
@Testpublic void lruTest(){ // 内存容量为3,即存储3条数据后,再放入数据,就会将最老使用的数据删除 MyLRUCache myLRUCache = new MyLRUCache(3); myLRUCache.put("1k","张三"); myLRUCache.put("2k","李四"); myLRUCache.put("3k","王五"); // 容量已满 System.out.println("myLRUCache:"+JSON.toJSONString(myLRUCache.getDataMap())); // 继续放入数据,该删除第一条数据为第四条数据腾出空间了 myLRUCache.put("4k","赵六"); // 打印出结果 System.out.println("myLRUCache:"+JSON.toJSONString(myLRUCache.getDataMap()));}运行结果:
myLRUCache:{"1k":"张三","2k":"李四","3k":"王五"}myLRUCache:{"2k":"李四","3k":"王五","4k":"赵六"}总结
好了,Redis的相关知识,就总结到这里了,算上前面两篇博文(Redis基础数据结构总结、你说一下Redis为什么快吧,怎么实现高可用,还有持久化怎么做的),这是Redis的第三篇了,这一篇博文也是新年的第一篇,元旦假期在家花了两天时间,自己学习自己总结。元旦假期结束后,我要继续面试了,后面我会继续将我面试中遇到的各种问题,总结出来,一是增加自己的知识面,二也将知识进行的传播。毕竟独乐乐不众乐乐。
,https://www.cnblogs.com/jimoer/p/14227467.html