实时频谱分析仪测试的工作原理_泰克代理商
1.1 FFT的基本原理
FFT方法是通过傅里叶运算将被测信号分解成分立的频率分量,达到与传统频谱分析仪同样的效果。它采用数字方法直接由模拟/数字转换器(ADC)对输入信号取样,再经FFT处理后获得频谱分布。
FFT方式进行频谱分析的原理
离散傅立叶变换X(k)可看成是z变换在单位圆上的等距离采样值,同样,X(k)也可看作是序列傅氏变换X(ejω)的采样,采样间隔为ωN=2π/N。因此,离散傅立叶变换实质上是其频谱的离散频域采样,对频率具有选择性(ωk=2πk/N),在这些点上反映了信号的频谱。
根据采样定律,一个频带有限的信号可以对它进行时域采样而不丢失任何信息,FFT变换则说明对时间有限的信号(有限长序列)也可以进行频域采样,而不丢失任何信息。所以只要时间序列足够长、采样足够密,频域采样就可较好地反映信号的频谱趋势,所以FFT可以用以进行信号的频谱分析。
FFT原理的频谱分析仪为获得良好的线性度和高分辨率,对信号进行数据采集时 ADC的取样率少等于输入信号高频率的两倍,亦即频率上限是100 MHz的实时频谱分析仪需要ADC有200 mS/S的取样率。
FFT的性能用取样点数和取样率来表征,例如用100 kS/S的取样率对输入信号取样1024点,则高输入频率是50 kHz,分辨率是50Hz。如果取样点数为2048点,则分辨率提高到25Hz。由此可知,高输入频率取决于取样率,分辨率取决于取样点数。FFT运算时间与取样点数成对数关系。FFT频谱分析仪需要高频率、高分辨率和高速运算时,要选用高速的FFT硬件,或者相应的数字信号处理器(DSP)芯片。
这个频带内对信号的分析是完全并行、实时处理的。因此在这个意义上它可以看作是一种在一定带宽下的“实时”频谱分析仪。另外,FFT分析方式是数字化的处理方法,它可以在模/数变换后用软件实现很多模拟扫频仪无法实现的测试功能,如灵活的触发方式、对存储的频谱信息进行详细的回放分析等。
傅立叶变换可把输入信号分解成分立的频率分量,同样它也可起着类似滤波器的作用,借助快速傅立叶变换电路代替低通滤波器,使频谱分析仪的构成简化、分辨率增高、一定跨度内测量时间缩短,这些都是现代FFT频谱分析仪的优点。
1.2 泰克公司实时频谱分析仪原理
泰克公司在传统FFT分析仪的基础上增强了ADC的采样位数和DSP的处理能力,开发出了第三代RF测试工具——实时频谱分析仪。与传统FFT分析仪相比,实时频谱分析仪在诸如频率范围、射频指标、捕获带宽、分析功能等方面都有了质的提高。其测试频率范围可达到14GHz,实时测试带宽大110 MHz,且具有全功能的通用及标准数字调制的测试能力。另外,它的射频指标如动态范围、灵敏度等也可以和高端的扫描频谱仪相媲美。
实时频谱分析仪原理
实时频谱分析仪进行的测量使用数字信号处理(DSP)技术实现。为了解如何在时域、频域和调制域中分析射频信号,首先需要考察仪器怎样采集和存储信号。在ADC数字化转换信号之后,信号使用时域数据表示,然后可以使用DSP计算所有频率和调制参数。
在RTSA使用实时采集无缝捕获信号时,三个条件(样点、帧和块)描述了存储的数据层级。4是样点、帧、块结构。
数据层级的底层是样点,它代表着离散的时域数据点。这种结构在其它数字取样应用中也很常见,如实时示波器和基于PC的数字转换器。决定相邻样点之间时间间隔的有效取样速率取决于选择的跨度。在实时频谱分析仪中,每个样点作为包含幅度和相位信息的I/Q对存储在内存中。
上一层是帧,帧由整数个连续样点组成,是可以应用快速傅立叶变换(FFT)把时域数据转换到频域中的基本单位。在这一过程中,每个帧产生一个频域频谱。
采集层级的高层是块,它由不同时间内无缝捕获的许多相邻帧组成。块长度(也称为采集长度)是一个连续采集表示的总时间。
在实时频谱仪实时测量模式下,它无缝捕获每个块并存储在内存中。然后它使用DSP技术进行后期处理,分析信号的频率、时间和调制特点。
采集模式,可以实现实时无缝捕获。对块内部的所有帧,每个采集在时间上都是无缝的。在一个采集块中的信号处理完成后,将开始采集下一个块。块存储在内存中,可以应用任何实时测量。例如,实时频谱模式下捕获的信号可以在解调模式和时间模式下分析。
北京凡实测控代理普源代理商、泰克代理商、是德代理商、安捷伦代理商、固纬代理商、横河代理商、泰克示波器、安捷伦示波器、示波器等品牌产品。公司业务涉及产品销售、维修、租赁和系统集成,产品报价低,品质保证,公司具有完善的售前售后服务和技术团队。
本文版权归北京凡实测控技术有限公司所有,转载请注明出处。
举报/反馈

凡实测控

630获赞 222粉丝
仪器仪表解决方案提供
关注
0
0
收藏
分享