探测面的选取
所选取的探测面对缺陷波的影响主要体现在两个方面:
在选择探测面时,应当使入射声波的声束中心线尽可能与缺陷表面相互垂直,并尽量使超声波能在不同方向射向缺陷,以便得到尽可能高的缺陷回波。例如,对于轧制的钢板,探测面应该选择经轧制形成的大平面,因为钢板中的缺陷大都与这个面平行。
在选取探测面时,应尽量避免由于工件的沟槽、孔等几何形状所产生的杂乱反射波对缺陷波造成影响。对于细长工件,特别要注意的是侧壁效应,应避免侧壁反射波与直接入射波在缺陷处产生干涉而导致缺陷波发生变化。
工件表面(反射界面)形状的影响
当超声波入射到弯曲的工件表面或反射界面时,其反射振幅将受界面曲率的影响而发生变化。
当反射界面向下凹时,使反射波能量集中,振幅增强;反之,当反射界面向上凸时,反射波能量发散,振幅减弱。
应该注意的一点是:利用平探头采用直接接触法对曲面进行检测时,其为点接触或线接触,如探头握持不当,折射角很容易发生变化,从而影响缺陷检测。
工件表面粗糙度的影响
工件表面粗糙度一方面会使入射到工件中的超声能量减少,同时,表面的凹凸不平还会使声波进人工件的时间产生差异。
若进入工件的声波相位刚好与无下凹处的声波相位相反,使进人工件的声波之间发生干涉,影响对缺陷的检测。
工件温度的影响
温度与探头折射角变化量之间的关系
材料中的声速通常与温度有关。
在要求较高的测量精度时,应注意温度对缺陷波的影响。
利用斜探头进行横波法检测时,如果被测工件的温度与斜探头K值的测定温度不同,则由于工件中的超声波传播速度发生变化,导致探头的折射角也随之发生变化,从而对缺陷波造成影响。
基体组织结构的影响
工件基体组织结构对缺陷波的影响主要表现在以下两个方面:
散射衰减
当超声波在其传播过程中遇到由不同声阻抗介质所组成的界面时,将产生散乱反射,导致声波在传播路径上的能量不断损失,由此造成的能量衰减叫做散射衰减。
散射衰减与材质的晶粒尺寸密切相关,当材质晶粒粗大时,散射衰减严重,被散射的超声波在介质中沿着复杂的路径传播下去,一部分可能最终变为热能,另一部分也可能传播到探头,在示波屏上引起林状回波(又叫草波)。
典型的是粗晶金属材料,一方面是声能衰减造成回波信号降低;另一方面是散射噪声的增加,使信噪比下降,严重时噪声甚至会湮没缺陷波。
对于多晶金属和大多数固体介质而言,散射衰减是造成超声波衰减的主要原因。
吸收衰减
实际所检测的工件通常是非完全弹性体,因此超声波在工件中传播时,会有一部分超声波能量不可逆地转化为热能而消耗,从而使超声波产生衰减,这种现象称为吸收衰减。
吸收衰减同样会使缺陷波的振幅降低。对于固体介质,吸收衰减相对于散射衰减是很小的,但对液体介质来说,吸收衰减就是主要的了。
超声波衰减特性是材料的重要声学性质之一
通过考察介质中超声波的衰减机理及衰减系数的变化规律,不但能够对不同的材质予以区分,同时还可以对介质的组织结构和形态、弥散不连续性及力学性能等进行无损表征和评价。
分析不同材料的超声波衰减随频率的变化关系。可以看到,混凝土、灰浆等的衰减非常大,只能在很低的频率下检测,而金属材料的超声波衰减相对要小得多,特别是钢和铝等。
灵科超声波