人工智能技术随着互联网的不断发展而得到了广泛的应用,下面我们就通过案例分析来了解一下,人工智能技术发展都需要注意哪些问题。
企业认识到人才短缺和技术进步的内部状态显著增加了绩效风险。因此,人工智能即服务的吸引力扩大,允许投资于应用见解而不是创造这些见解。那么有多少企业能够负担得起雇佣数百人来管理一个模型,并同时采用数千个GPU来运行。
此外,包括银行业、金融服务业、保险业和制造业在内的垂直行业将以变革性的方式进一步部署人工智能技术,以提升其绩效和运营。就像互联网如何改变商业交易一样,人工智能将产生同样程度的影响。这些行业将从测试部署转向生产,并将获得人工智能承诺的回报。
负责任的人工智能的原则现在已经确立:公正的数据、对行业数据收集和标签方面的公平对待,以及认识到人工智能项目应该促进社会公益,或者至少避免潜在的社会危害。实施这些原则可以确保人工智能项目按预期工作并提供保护措施。”
为了实现这一目标,我们将看到更多的工业企业有意识地从对通用人工智能模型的投资转向更适合的用途、更精确的工业人工智能的应用程序,以帮助他们实现盈利和可持续发展的目标。这意味着从无法涵盖所有的大量设施数据训练的人工智能模型转向更具体的工业人工智能模型,这些模型利用领域专业知识通过深度分析和机器学习进行解释和预测。工业数据将在整个资产生命周期中转化为成功的业务成果。